
Stable propagation algorithm for the minimization of the Bethe free energy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11201

(http://iopscience.iop.org/0305-4470/36/44/002)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/44
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11201–11211 PII: S0305-4470(03)59695-0

Stable propagation algorithm for the minimization of
the Bethe free energy

M Pretti and A Pelizzola

Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica,
Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

Received 17 February 2003, in final form 4 July 2003
Published 22 October 2003
Online at stacks.iop.org/JPhysA/36/11201

Abstract
We propose a new propagation algorithm for the minimization of the Bethe free
energy for a generic lattice model with pair interactions. The algorithm turns
out to be more stable than belief propagation, as it reaches a fixed point also
for highly frustrated systems such as spin glasses, and faster than the provably
convergent double loop algorithms.

PACS numbers: 05.10.−a, 05.50.+q, 89.70.+c

1. Introduction

The Bethe approximation [1] is a well-known technique in the statistical mechanics of
lattice models. Basically, it improves the ordinary mean-field theory, by taking into account
correlations between nearest-neighbour (NN) sites, but can be presented under different points
of view. In the original work by Bethe [2], it has been introduced as a self-consistent field
theory. Subsequently, it has been formulated [3] as a simplified (‘quasi-chemical’) evaluation
of the number of configurations of the system, hence of its entropy. Moreover, it can be seen
as the lowest step (pair approximation [1, 4]) of a hierarchy of approximations that take into
account correlations up to arbitrarily large clusters, which is known as the cluster variation
method [5, 6]. The last formulation shows most clearly the variational nature of the Bethe
approximation, which determines thermodynamic equilibrium states of a system as the minima
of a suitable approximate free energy (the Bethe free energy), whose variational parameters
are single site and NN pair probability distributions (PDs).

Recent works [7–9] have attracted new interest in the Bethe approximation, as they have
shown that the highly successful belief propagation (BP) algorithm [11], employed for solving
statistical inference problems on generic graphical models [12–14], actually coincides with the
minimization of a Bethe free energy. Statistical inference includes a wide range of problems
of technological relevance such as image restoration [15], artificial vision [13], decoding
of error-correcting codes [12], diagnosis [16]. The inference problem can be generally
mapped onto a thermodynamic system defined on a graph [17], and ultimately amounts to
the determination of the Boltzmann distribution of statistical mechanics [8]. It has long been
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known by statistical physicists [18] that the Bethe approximation is exact for tree-like graphs,
that is for graphs without loops. Nevertheless, it has been shown that BP algorithms, that is the
Bethe approximation, work surprisingly well also for inference problems mapped on graphs
with loops [14], such as decoding of the high performance turbo codes [12]. Moreover, the BP
algorithm is, on the basis of the recently proposed ‘survey propagation’ method [19, 20], a very
powerful algorithm for combinatorial optimization problems which extends the ground-state
version of belief propagation to cases with a complex energy landscape, exhibiting many local
minima.

It must be remarked that, despite its success, the BP algorithm is known [9, 21, 22] to fail
to converge in certain highly frustrated cases, a prototype of which is the Edwards–Anderson
spin glass model [23]. Alternative algorithms exist, such as the natural iteration method
(NIM), by the inventor of the cluster variation method himself [24–27] and the concave–
convex procedure (CCCP) by Yuille [22], which lowers the free energy at each iteration, and
hence converge to local minima. Nevertheless, the latter algorithms turn out to be much slower
than BP [28]. In this paper we introduce a new propagation algorithm for the minimization
of the Bethe free energy, and compare its performance against BP, on the Edwards–Anderson
model [23]. The algorithm is based on a factorization of the model PD that holds for tree-like
models (Bethe approximation), and on an exact expression for the conditioned PD of any
cluster of sites with respect to its neighbourhood, whence it will be denoted as ‘conditioned
probability’ (CP) algorithm. We have not been able to prove analytically the convergence of
the algorithm, and its stability with respect to the initial condition, but both have been verified
on a large range of parameter values for the model under consideration. In contrast, the BP
algorithm fails to converge. This paper is organized as follows. In section 2 we introduce
the new algorithm. In section 3 we recall the basics of the BP algorithm. In section 4 we
compare the behaviours of the two algorithms on the spin glass model, and discuss the results.
Section 5 is devoted to a short analysis of running times, in comparison with the alternative
(NIM and CCCP) algorithms mentioned above, while in section 5 we give some concluding
remarks. In the appendix we verify explicitly that the fixed points of the BP algorithm are also
fixed points of the CP algorithm.

2. The CP algorithm

Let us first introduce the basic idea of the algorithm. Consider a model, defined on a graph,
such that a discrete variable is associated with each site (node) of the graph. According to
figure 1, let us denote by A any cluster of sites in the graph, by B the ‘neighbourhood’ of A

(that is the set of sites interacting with the sites in A), and by C the cluster made up of all graph
sites except those in A. With these assumptions, the statistical (Boltzmann) weight w(x) of a
configuration x of the model can be decomposed into

w(x) = wAB(xA, xB)wC(xC) (1)

where wAB(xA, xB) weighs only interactions among sites in A (whose configuration is denoted
by xA), and interactions between sites in A and sites in B (the configuration of the latter being
denoted by xB). Similarly wC(xC) weighs only interactions among sites in C (configuration
denoted by xC). The PD pA(xA) of the configuration xA can be expressed, via the Bayes
theorem, as

pA(xA) =
∑

xB

pA|B(xA|xB)pB(xB) (2)
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Figure 1. Sketch of the notation employed for a generic lattice: A represents any cluster of sites
(a subset of the lattice); B denotes the neighbourhood of A (the set of sites interacting with A);
C is the set of lattice sites that are not in A (the complement of A). Note that A ∩ B = A ∩ C = ∅,
while B ∩ C = B.

where pB(xB) is the PD of xB , and pA|B(xA|xB) is the conditioned PD of xA over xB , while
the sum is taken over all configurations xB . The model PD p(x), after normalization, can be
written as

p(x) = w(x)∑
x w(x)

(3)

where the sum runs over all system configurations, and it is easy to show that

pA|B(xA|xB) = wAB(xA, xB)∑
x̃A

wAB(x̃A, xB)
. (4)

Replacing equation (4) into equation (2) provides a relationship between the cluster A PD and
the PD of its neighbourhood pB(xB). If A is taken to be a single site and B is the set of its
NNs (provided the model includes NN interactions only), while, as an approximation, pB(xB)

is assumed to factorize into a product of single site PDs, then one obtains a self-consistent
equation for single site PDs. For Ising-like models this approach has been known as ‘hard
spin’ mean-field theory [29–32].

Let us now consider a model incorporating only NN interactions. In this case, Boltzmann
weights can be written as

w(x) =
∏

〈ij〉
wij (xi, xj )

∏

i

[wi(xi)]
1−qi (5)

where the former product runs over NN pairs, and the latter over sites. Moreover, wij (xi, xj )

weighs interactions between sites i and j and of both with external fields (if present), wi(xi)

weighs interactions of site i with external fields only, and qi is the coordination number of
site i. We assume that A is any NN pair ij , and accordingly B is the {i ′j ′} neighbourhood,
where, from now on, i ′ will always run over NNs of j except i, while j ′ will run over NNs of i
except j . The notation is explained in figure 2. The weight factor wAB(xA, xB), now denoted
by wij{i ′j ′}(xi, xj , {xi ′ , xj ′ }), can then be chosen to be

wij{i ′j ′}(xi, xj , {xi ′ , xj ′ }) = wij (xi, xj )
∏

i ′

wji ′(xj , xi ′)

wj (xj )

∏

j ′

wij ′(xi, xj ′)

wi(xi)
. (6)

According to the Bethe approximation, the PD p(x) is assumed to factorize in the same
way as the weight factor w(x) in equation (5), that is

p(x) =
∏

〈ij〉
pij (xi, xj )

∏

i

[pi(xi)]
1−qi (7)
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Figure 2. Sketch of the notation employed for a generic tree: i and j are a pair of NN sites; i′ (j ′)
labels NNs of j (i) except i (j); i′′ (j ′′) labels NNs of j ′ (i′) except i (j).

where pij (xi, xj ) denotes pair PDs, and pi(xi) site PDs. Such a factorization turns out to be
exact on a tree graph (in the Bethe approximation scheme for a given lattice the approximating
tree should have the same local structure and interactions as those of the system it aims
to approximate [33]). With the above factorization, the joint PD of the pair ij and its
neighbourhood {i ′j ′} can be written as

pij{i ′j ′}(xi, xj , {xi ′ , xj ′ }) = pij (xi, xj )
∏

i ′

pji ′(xj , xi ′)∑
x̃i′

pji ′(xj , x̃i ′)

∏

j ′

pij ′(xi, xj ′)∑
x̃j ′ pij ′(xi, x̃j ′)

(8)

where site PDs pi(xi) have been replaced by their expressions as marginal distributions of
different pair PDs. Such expressions turn out to be essential for the algorithm to work, due to
the fact that, during a run, pair PDs do not necessarily give the same marginal distribution for
the same site. The neighbourhood {i ′j ′} PD can be easily derived as

p{i ′j ′}({xi ′ , xj ′ }) =
∑

xi ,xj

pij{i ′j ′}(xi, xj , {xi ′ , xj ′ }). (9)

As a consequence, equation (2) together with (4) is finally modified into

pij (xi, xj ) =
∑

{xi′ ,xj ′ }

wij{i ′j ′}(xi, xj , {xi ′ , xj ′ })∑
x̃i ,x̃j

wij{i ′j ′}(x̃i , x̃j , {xi ′ , xj ′ })p{i ′j ′}({xi ′ , xj ′ }) (10)

which, together with equations (8) and (9), provides a set of self-consistent equations for all
pair PDs in the system. The CP algorithm consists in the iterative (fixed point) solution of
such set of equations.

3. The BP algorithm

Let us now briefly recall the basic idea underlying the BP algorithm. The Bethe free energy,
exact for tree models, can be written as

βF =
∑

〈ij〉

∑

xi ,xj

pij (xi, xj ) ln
pij (xi, xj )

wij (xi, xj )
+

∑

i

(1 − qi)
∑

xi

pi(xi) ln
pi(xi)

wi(xi)
(11)

where β = 1/kT is the inverse temperature, while the other notation are consistent with
those introduced previously. Equilibrium (pair and site) PDs are determined as those which
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minimize F, subject to normalization and ‘compatibility’ constraints. The latter impose that
site PDs can be obtained as marginal distributions of pair PDs, that is,

pi(xi) =
∑

xj

pij (xi, xj ) (12)

where j denotes any NN site of i. According to the Lagrange multiplier method, one defines
a suitable ‘extended’ free energy functional, which depends on additional unknowns (the
Lagrange multipliers), but coincides with F when the constraints are satisfied. The constrained
problem is usually solved in two steps, by minimizing the extended free energy with respect to
PDs for given multipliers, and then by determining the latter in order to satisfy the constraints.
As far as the Bethe free energy is concerned, the former step can be worked out analytically,
leading to

pij (xi, xj )

wij (xi, xj )
∝

∏

i ′
mi ′j (xj )

∏

j ′
mj ′i (xi)

pi(xi)

wi(xi)
∝

∏

j

mji(xi)

(13)

where mji(xi) are derived by a suitable mapping of the Lagrange multipliers associated
with the compatibility constraints, and are known as ‘messages’ in the framework of the BP
algorithm. The precise form of the mapping is irrelevant for our presentation. Note that
proportionality symbols hide the normalization multipliers. It is possible to show that the BP
algorithm corresponds to the following update rule for the messages,

m̂ji(xi) = mji(xi)

∑
xj

pij (xi, xj )

pi(xi)
(14)

where a hat denotes the ‘new’ messages, PDs are given by equations (13), while normalization
is easily resolved at each step. Let us note that the above form is different from that in which
the BP rule is usually reported in the literature [8, 22]. It has the advantage of showing
immediately that the algorithm can just converge, if it does, to compatible PDs, proving that
its fixed points are equivalent to stationary points of the Bethe free energy. By substituting
equations (13) into equations (14) it is easy to rederive the usual BP rule

m̂ji(xi) ∝
∑

xj

wij (xi, xj )

wi(xi)

∏

i ′
mi ′j (xj ). (15)

4. Algorithm test on a spin glass model

In this section we give an example of the performance of the CP algorithm, compared to the BP
algorithm, for the Edwards–Anderson model [23], i.e. a spin glass model with equal probability
of ferro- and antiferromagnetic interactions, in zero external magnetic field. This is a highly
frustrated system, for which the BP algorithm at low enough temperature does not converge,
showing an apparently chaotic behaviour. We have considered a finite (10 × 10) square lattice
of Ising spins (s = ±1), assuming NN interactions of fixed (J ) intensity, with a randomly
generated sign and periodic boundary conditions. Of course, this is a particular instance of
the (finite) random system, for which we can approximately compute magnetization and free
energy, by minimizing the Bethe functional (11). At low temperature, we find a non-uniform
(glass-like) phase with finite average magnetization, and different local minima, separated by
large free energy barriers. The CP algorithm turns out to converge easily to such local minima.
It has to be remarked here that, as far as the square lattice model is concerned, the physical
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Figure 3. � parameter as a function of the iteration index k, for the CP algorithm (a) and the BP
algorithm (b) runs. For the latter case, α denotes the over-relaxation parameter used for each run.

result is wrong, because the two-dimensional Edwards–Anderson model is generally believed
to have zero transition temperature [34]. Nevertheless, our analysis is meant to give an example
of Bethe free energy in which the presence of quenched randomness prevents the BP algorithm
(but not the CP algorithm) from converging. Let us also note that, rigorously speaking, the
Bethe approximation usually gives wrong answers (since it predicts symmetry breaking also
for finite systems), but the resulting phase behaviour is often a good approximation for the
corresponding infinite system.

In order to characterize convergence, we have to define an indicator (�) of the distance
of the current iteration from the solution. At each iteration we estimate magnetization at site
i, by means of all the possible joint PDs of i with its NNs j , in the following way:

M
(j)

i =
∑

s=±1

s
∑

s ′=±1

pij (s, s
′). (16)

In principle, the estimates M
(j)

i are different even for the same site i, because pair PDs do
not satisfy the compatibility constraints during the run. We then define � as the maximum
dispersion of magnetization estimates, that is

� ≡ max
i

max
j

∣∣∣∣∣∣
M

(j)

i − 1

qi

∑

j ′
M

(j ′)
i

∣∣∣∣∣∣
(17)

where j and j ′ run over all NNs of i. In figure 3(a) we report � as a function of the iteration
index k, for our model at an inverse temperature βJ = 0.7, which is already in the low-
temperature (glassy) regime. It is possible to see that, after the very beginning, where some



Stable propagation algorithm for the minimization of the Bethe free energy 11207

Figure 4. Grey-scale representation of site magnetization for the instance of the Edwards–
Anderson model used for the CP algorithm run described in the text (βJ = 0.7). Each square
represents one of the 10 × 10 spins. Lighter grey tones denote higher magnetizations.

oscillations are present, � decreases in a regular exponential way, showing the algorithm
convergence. We have observed a similar behaviour also for much larger systems and lower
temperatures. For the particular run reported here, the initial condition has been chosen to be
the one with statistically independent site PDs with uniform magnetization Mi = 0.9 for all i.
Anyway, it has been possible to verify that initial conditions do not affect convergence, even if
different local minima can be reached from different starting points. The local magnetizations
we have obtained with this run are plotted in figure 4 in grey scale.

Let us now consider the performance of the BP algorithm on exactly the same system
at the same temperature. For this case we define � in a slightly different way. In the BP
algorithm, estimates of both pair and single site PDs are available at each iteration. So we can
also evaluate the site magnetizations directly, making use of the site PDs, in the following way:

Mi =
∑

s=±1

spi(s). (18)

It seems natural to define magnetization dispersion with respect to the latter quantity, that is

� = max
i

max
j

∣∣M(j)

i − Mi

∣∣. (19)

From figure 3(b) it is evident that, even for this quite small system, the BP algorithm turns out
not to converge, indeed it shows an apparently chaotic behaviour. We have investigated the
possibility of introducing an ‘over relaxation’ parameter α < 1, that is to give an exponent α to
the probability ratio in equation (14), in order to reduce oscillations and favour convergence.
Nevertheless, figure 3(b) shows that, upon decreasing α, only the frequency of oscillations is
monotonically reduced, but for instance the amplitude is higher for α = 0.01 than for α = 0.1,
and a convergent behaviour is never obtained.

Let us finally note that we have not been able to prove in general the convergence of the
CP algorithm. For optimization algorithms aimed at minimizing functions which are bounded
from below, such a proof usually uses the fact that the cost function (free energy) is reduced at
each step [22, 24, 35]. This cannot be the case for the CP algorithm, because the free energy is
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Figure 5. Running times for the BP (squares) and the CP algorithm (circles) on the homogeneous
L × L Ising ferromagnet (solid lines), with 1% (dashed lines) or with 10% (dotted line) random
antiferromagnetic bonds, as a function of L.

not a well-defined quantity when, during execution, pair PDs do not satisfy the compatibility
constraints.

5. Execution times and scaling

Having shown that CP converges even when BP fails, it is interesting to compare the
running times of CP with those of the double loop algorithms, NIM and CCCP, which
are known to converge in every case. For this analysis, we have actually considered a
slightly different system, that is an L × L square lattice Ising model, with randomly chosen
1% antiferromagnetic bonds, and periodic boundary conditions. Temperature is given by
βJ = 0.5 and initial conditions correspond to a nearly saturated ferromagnetic configuration,
namely Mi = 0.999 999, ∀i. The procedures have been terminated when � < 10−6. The
reason for choosing a test model with very little disorder (so that also BP turns out to converge)
is due to the fact that taking into account only single instances of the random system introduces
a ‘noise’ in the evaluation of execution times. In the case of highly disordered systems, such
a noise does not allow us to recognize the actual scaling behaviour of the algorithms, with
respect to the system dimension. This effect can be clearly observed in figure 5, where we
compare execution times for systems with different degrees of disorder. Only the limit of a
homogeneous ferromagnetic system displays a precise t ∝ L2 scaling. On an ordinary DEC
Alpha workstation, for CP we obtain t/L2 ≈ 1.9×10−3s, while BP gives t/L2 ≈ 1.1×10−4s,
that is more than one order of magnitude faster. It is interesting to observe how a little disorder
can increase running times. Namely, in the 1% case we obtain a factor ranging from 1 to 3 for
CP, and from 2.5 to 3 for BP. Having performed the runs on exactly the same systems with
the same initial conditions, this fact confirms the different nature of the two algorithms.

Figure 6 compares the running times of BP, CP, NIM and CCCP. In spite of the presence
of disorder, times generally keep on scaling roughly as L2, but this is not true for the NIM,
which scales roughly as L3.6. As previously mentioned, BP is the fastest algorithm, but CP is
roughly an order of magnitude faster than CCCP, which in turn is faster than NIM (as already
shown in a one-dimensional case [28]). Therefore, it turns out that CP is the fastest one among
the always converging algorithms.
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Figure 6. Running times for the BP (squares), CP (circles), CCCP (triangles), and NIM algorithm
(diamonds), on the L×L Ising ferromagnet with 1% random antiferromagnetic bonds, as a function
of L.

6. Conclusions

In this paper we have proposed a new (CP) algorithm for the minimization of the Bethe free
energy. The CP algorithm is based on two main ideas, that are an exact expression for the
conditioned probability (CP) of a pair of sites with respect to its neighbourhood, and the
factorization of the total system PD in terms of pair and site PDs. Such a factorization, exact
for tree graphs, just gives rise to the Bethe expression for the free energy. This guarantees that
already in principle the CP algorithm (if convergent) finds precisely the stationary points of
the Bethe free energy. This is also shown analytically in the appendix, while the fact that it
converges to the minima can be (by now) only verified numerically. A very appealing feature
of the CP algorithm is that it seems to converge quite easily also for highly frustrated spin
glass models, for which the previously known BP algorithms fail. Such a property might
be of use especially in the framework of the survey propagation method [19, 20], dealing
with disordered systems. We have shown this feature, which—we remark—we have not been
able to prove in general, on a simple instance of the Edwards–Anderson model at a fixed
temperature, but we have verified it on many other cases. With respect to another recently
proposed algorithm, the CCCP, which has been proved analytically to converge to the minima
of the Bethe free energy, as well as the NIM, the CP algorithm has the advantage of being a
single loop algorithm, while the others are double loop ones. This makes the CP much faster
than CCCP and NIM, as we have shown. Let us finally remark that it would be of interest
to extend the present work to higher order approximations of the cluster variation method,
and/or to models with interactions not limited to NNs, and work is in progress along these
lines.

Appendix. Equivalence of CP and BP fixed points

The equivalence between the fixed points of the CP algorithm and the minima of the Bethe
free energy should be guaranteed by the thermodynamic variational principle, and by the fact
that a completely general free energy

βF =
∑

x

p(x) log
p(x)

w(x)
(A1)
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turns into the Bethe free energy (11) when factorizations (5) and (7) hold. Nevertheless
it may be interesting to verify this issue explicitly. Indeed, we show that inserting the BP
rules (equations (13) and (14)) into the self-consistent equation which defines our method
(equation (10)) gives rise to an identity.

According to equations (8) and (9), when the compatibility constraints (12) are verified
(which is true at a fixed point of the BP algorithm) we can write

p{i ′j ′}({xi ′ , xj ′ }) =
∑

xi ,xj

pij (xi, xj )
∏

i ′

pji ′(xj , xi ′)

pj (xj )

∏

j ′

pij ′(xi, xj ′)

pi(xi)
. (A2)

By replacing the PDs with their expressions as a function of the messages, equations (13), and
taking into account equation (6), we find

p{i ′j ′}({xi ′ , xj ′ })∑
xi ,xj

wij{i ′j ′}(xi, xj , {xi ′ , xj ′ }) ∝
∏

i ′

∏

j ′′
mj ′′i ′(xi ′)

∏

j ′

∏

i ′′
mi ′′j ′(xj ′) (A3)

where the inner products run respectively over all sites j ′′ that are NNs of i ′ except j , and over
all sites i ′′ that are NNs of j ′ except i (see figure 2). Let us now substitute the latter expression
into the self-consistent equation (10). By means of some simple algebra we obtain

pij (xi, xj )

wij (xi, xj )
∝

∏

i ′

∑

xi′

wji ′(xj , xi ′)

wj (xj )

∏

j ′′
mj ′′i ′(xi ′)

∏

j ′

∑

xj ′

wij ′(xi, xj ′)

wi(xi)

∏

i ′′
mi ′′j ′(xj ′). (A4)

Finally, from equation (15) we see that, at a fixed point of the BP algorithm, we have

mji(xi) ∝
∑

xj

wij (xi, xj )

wi(xi)

∏

i ′
mi ′j (xj ) (A5)

which, replaced into the previous equation, give rise again to equation (13), thus to an identity.
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